Washington University in St. Louis
James McKelvey School of Engineering

POLICIES
AND
REGULATIONS

Governing Master’s Students in the Department of Biomedical Engineering 2020-21
TABLE OF CONTENTS

BULLETIN

ADMISSIONS DEADLINES

REGISTRATION & ADVISING

ACADEMIC INTEGRITY

INDEPENDENT STUDY

DEADLINES

MASTER OF SCIENCE (MS)
Degree Requirements
Course Selection
Seminars

BACHELOR'S/MASTER'S (BS/MS)

MASTER OF ENGINEERING IN BIOMEDICAL INNOVATION (MENG)
Degree requirements
Courses and Timeline

OTHER POLICIES
Secretarial service
Copying service

CONTACTS
POLICIES AND REGULATIONS FOR MASTER’S STUDENTS IN BIOMEDICAL ENGINEERING

BULLETIN
For clarification about University policies concerning master’s degrees in the School of Engineering and Applied Science, please see the relevant University Bulletin at:
http://bulletin.wustl.edu/grad/engineering/biomedical/

ADMISSIONS DEADLINES
APPLICATION SUBMISSION
 MS – ENTERING IN FALL March 1
 MS – ENTERING IN SPRING October 1
 BS/MS September 1
 MEng January 15

ENROLLMENT DECISION
 MS – ENTERING IN FALL May 15
 MS – ENTERING IN SPRING November 1
 BS/MS May 15
 MEng March 15

REGISTRATION & ADVISING
Registration takes place each semester on dates announced by the University. Detailed instructions for registration plus necessary materials are mailed directly to all graduate students enrolled during the previous semester.

All master’s students in the department must register each semester until all degree requirements are completed. Any master’s degree must be completed within six years from the time the student is admitted to graduate standing.

Full-time: 9 credits or more
Normally students register in this category until they have earned the total number of credit hours required for their degree. Master’s students register for 9 credits or more of courses and/or research each semester until 30 hours are completed.
Part-time: 1-8 credits. This option is typically not available for international students. The one exception is if the student is in the final semester and his/her F-1 Application for a Reduced Course Load is approved by the Office of International Students and Scholars (OISS).

Inactive: Students who have not completed their course requirements but who, because of personal reasons, must suspend their studies temporarily may register as inactive students with the approval of the Director of Master’s Studies. Not available for international students.

Academic Advisor: Each entering master’s student will be assigned an academic advisor by the Director of Master’s Studies. This advisor will be a full-time faculty member in the Department of Biomedical Engineering and will be responsible for acquainting the student with degree requirements.

ACADEMIC PERFORMANCE

Master’s students must maintain a cumulative grade point average of at least 2.70. Academic probation occurs if a semester or cumulative grade point average drops below 2.70. A master’s student is eligible for academic suspension if either one of the following occurs. The student

- earns a semester or cumulative grade point average less than 2.00, or
- has been on probation for two semesters and has not attained a 2.70 cumulative grade point average.

ACADEMIC INTEGRITY

All students in the School of Engineering & Applied Science are expected to conform to high standards of conduct. This statement on student academic integrity is intended to provide guidelines on academic behaviors that are not acceptable. Please visit the Engineering Student Services website for examples of violations and a link to the University-wide policy: http://engineering.wustl.edu/current-students/student-services/Pages/academic-integrity-policy.aspx

INDEPENDENT STUDY

A maximum of 3 credits of independent study (BME 500) may be counted toward a master’s degree. Registration for independent
study requires submission of the Independent Study form and approval by the Director of Master’s Studies. Students pursuing other significant research experiences such as a thesis should not plan to register for Independent Study.

DEADLINES
Graduation requirements must be fulfilled and forms submitted prior to deadlines established by the School and University. Current dates can be found at https://engineering.wustl.edu/current-students/student-services/Pages/Academic-Calendar.aspx.

MASTER OF SCIENCE PROGRAMS

REQUIREMENTS
A maximum of six units of graduate credit obtained at institutions other than Washington University may be applied toward the MS degree awarded by Engineering provided that they have not been applied toward any other degree. Transfer credit must satisfy a master’s degree requirement and be approved by the Director of Master's Studies as well as by the Engineering Registrar. No courses carrying grades lower than B can be accepted for transfer credit. Up to two 400-level courses may be counted toward the 30 credits of graduate coursework required for the MS (but not including independent study courses, journal clubs or seminar-based courses).

Two options exist for the Master of Science (MS) degree, *thesis* and *non-thesis*:

Thesis option: For this option, a minimum of 24 credits of course work is required, with the balance being thesis research. The courses must fulfill the core curriculum requirement (see the “Course Selection” section). The remainder of the coursework is generally driven by the student’s research interest. Students must declare the thesis option before the second semester of MS studies begins.

Registration & Requirements for Thesis: Thesis students must register for E62 BME 599 Master’s Research with the section of the intended thesis mentor at least twice, one each semester s/he conducts research (up to 6 credits).

Every semester a student intends to register for E62 BME 599 Master’s Research:
• they must submit to the Director of Master's Studies an updated Title, Scope and Procedure form, found on the BME website. The Director must approve this form before this course registration will be allowed.
• the thesis mentor of the student must assign a midterm grade for this course, so students know they are making suitable progress toward a thesis prior to the withdrawal deadline of the course. Grades will reflect research performance.

A grade of B– or higher must be obtained for at least 6 credits of this course in order to graduate with the thesis option. These grades are assigned by the thesis mentor. Important note: failure to complete a thesis in the indicated lab would lead to a failing grade in one or more of these courses.

Thesis Committee: Students preparing a thesis for the Master of Science will have a three-member thesis committee appointed by the Director of Master's Studies and headed by the research mentor. This committee will be responsible for hearing, critiquing and approving the student’s thesis. The structure of the Master’s Thesis Committee should be as follows:

1. At least three faculty approved by the Director
2. The committee chair is the thesis advisor. This person must be identified and approved by the Director the first time a student submits the Title, Scope and Procedure form.
3. At least one member of the committee must be a primary or affiliate faculty member of BME.
4. Committee membership must be determined no later than the second time a student submits the Title, Scope and Procedure form. Approval of this second form by the Director is indication that the student is free to plan the thesis defense. Discussion with the thesis mentor and the Director is encouraged in order to select appropriate committee members.

Students are encouraged to establish their committees and schedule their thesis defenses early; the deadlines having scheduled a defense date are as follows:

October 31 for December graduates
March 31 for May graduates
June 30 for August graduates
Upon completion of the thesis, the candidate must pass an oral defense conducted by their thesis committee. This will consist of a public presentation followed by questions from the committee. Candidates must have a cumulative grade point average of 2.7 or better to receive the degree.

Non-thesis (Course) option: Candidates must accumulate a total of 30 graduate credits (up to six can be at the 400 level), have a cumulative grade point average of 2.7 or better, and satisfy the curriculum distribution requirements. The balance of the course credits should be selected with a view toward coherence reflecting a specialization in a research area.

Seminars
Each year the department sponsors or participates in a series of seminars by visiting lecturers and Washington University faculty and students. All MS students are required to enroll in E62 BME 501 Graduate Seminar, which is a pass/fail course carrying no credit, for a minimum of 2 semesters (1 if only an MS student for 1 semester prior to graduation). A passing grade is required for each semester and is earned by regular attendance at these events. The number of required seminars is determined each semester but will not be fewer than 10 or more than 1 per week. Seminars outside the departmental seminar series may be substituted but should still be documented.

Course Selection
MS students formulate their course program in consultation with their academic advisor. The curriculum to be completed by MS students requires the following minimum course distribution from the approved lists:

- 3 graduate courses (9 credits) in the area of BME
- 1 graduate course (3 credits) in the area of life sciences
- 1 graduate course (3 credits) in the area of mathematics/computing
- 5 graduate program electives (non-thesis option only)
- 3 program electives (thesis option only)

Other than E62 BME 501 Graduate Seminar, all courses for the MS-BME must be taken for a letter grade.
Educational Programs and Constituent Courses
For the most up-to-date information, please contact the Department of Biomedical Engineering’s Director of Master’s Studies.

Courses that fulfill the BME requirement (in any combination):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 5771</td>
<td>Biomedical Product Development</td>
</tr>
<tr>
<td>BME 5772</td>
<td>Biomedical Business Development</td>
</tr>
<tr>
<td>BIOL 5014</td>
<td>Biotech Industry Innovators</td>
</tr>
</tbody>
</table>

General Biomedical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 523</td>
<td>Biomaterial Science</td>
</tr>
<tr>
<td>BME 524</td>
<td>Tissue Engineering</td>
</tr>
<tr>
<td>BME 559</td>
<td>Intermediate Biomechanics</td>
</tr>
<tr>
<td>BME 564</td>
<td>Orthopedic Biomechanics – Cartilage/Tendon</td>
</tr>
<tr>
<td>BME 565</td>
<td>Biosolid Mechanics</td>
</tr>
<tr>
<td>BME 5565</td>
<td>Mechanobiology of Cells and Matrices</td>
</tr>
<tr>
<td>MEMS 5560</td>
<td>Interfaces and Attachments in Natural and Engineered Structures</td>
</tr>
<tr>
<td>MEMS 5566</td>
<td>Engineering Mechanobiology</td>
</tr>
<tr>
<td>MEMS 5606</td>
<td>Soft Nanomaterials</td>
</tr>
<tr>
<td>MEMS 5607</td>
<td>Introduction to Polymer Blends and Composites</td>
</tr>
<tr>
<td>MEMS 5608</td>
<td>Introduction to Polymer Science & Engineering</td>
</tr>
</tbody>
</table>

Biomaterials & Tissue Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 562</td>
<td>Mechanics of Growth and Development</td>
</tr>
<tr>
<td>BME 574</td>
<td>Quantitative Bioelectricity and Cardiac Excitation</td>
</tr>
<tr>
<td>BME 575</td>
<td>Molecular Basis of Bioelectrical Excitation</td>
</tr>
<tr>
<td>BME 5901</td>
<td>Integrative Cardiac Electrophysiology</td>
</tr>
<tr>
<td>MEMS 5562</td>
<td>Cardiovascular Mechanics</td>
</tr>
</tbody>
</table>

Cardiovascular Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED 502</td>
<td>Radiological Physics and Dosimetry</td>
</tr>
<tr>
<td>MED 506</td>
<td>Radiation Oncology Physics</td>
</tr>
<tr>
<td>BME 544</td>
<td>Biomedical Instrumentation</td>
</tr>
<tr>
<td>BME 589</td>
<td>Biological Imaging Technology</td>
</tr>
<tr>
<td>BME 5820</td>
<td>Fundamentals and Applications of Modern Optical Imaging</td>
</tr>
<tr>
<td>BME 591</td>
<td>Biomedical Optics 1: Principles</td>
</tr>
<tr>
<td>BME 592</td>
<td>Biomedical Optics 2: Imaging</td>
</tr>
<tr>
<td>BME 5907</td>
<td>Advanced Concepts in Image Science</td>
</tr>
<tr>
<td>BME 570</td>
<td>Mathematics of Image Science</td>
</tr>
</tbody>
</table>
BME 593 Computational Methods for Inverse Problems
BME 594 Ultrasound Imaging
BIOL 5146 Principles and Applications of Biological Imaging
BIOL 5147 Contrast Agents for Biological Imaging
CSE 568M Imaging Sensors
ESE 438 Applied Optics
ESE 588 Quantitative Image Processing
ESE 5932 Computational Methods for Imaging Science
PSYCH 4450 Functional Neuroimaging Methods

Molecular, Cellular, and Systems Engineering
BME 537 Computational Molecular Biology (Algorithms for Computational Biology)
BME 542 Biomacromolecules Design and Engineering
BME 543 Molecular and Cellular Engineering
BME 550 Numerical Methods for Computational Modeling in Biomedicine
BME 5610 Protein Structures and Dynamics
BME 5903 Physical Methods for Biomedical Scientists
BME 5913 Molecular Systems Biology: Computation & Measurements for Understanding Cell Physiology and Disease
BME 595 Drug Delivery Systems: Principles and Applications
BIOL 5311 Dynamics in Mesoscopic Molecular Systems
BIOL 5312 Macromolecular Interactions
CSE 584A Algorithms for Biosequence Comparison

Neural Engineering
BME 471 Bioelectric Phenomena
BME 474 Open Challenges in Systems Neuroscience
BME 533 Biomedical Signal Processing
BME 5501 Translational Neuroengineering
BME 572 Biological Neural Computation
ESE 546 Dynamics & Control in Neuroscience

Courses that fulfill:

Life Sciences requirement
BME 503A Cell & Organ Systems
MED 505 Radiobiology (2Cr)
BME 530A Molecular Cell Biology for Engineers
BME 538 Cell Signal Transduction
BME 5902 Cellular Neurophysiology
BME 5909 Physiology of the Heart
BIOL 404 Laboratory of Neurophysiology
BIOL 4071 Developmental Biology (4Cr)
BIOL 4580 Principles of Human Anatomy & Development
BIOL 4810 General Biochemistry I
BIOL 4820 General Biochemistry II
BIOL 5051 Foundations in Immunology (4Cr)
BIOL 5053 Immunobiology (4Cr)
BIOL 5062 Central Questions in Cell Biology
BIOL 5068 Fundamentals of Molecular Cell Biology
BIOL 5079 The Science, Medicine, and Business of Vaccines & Drugs (2Cr)
BIOL 5224 Molecular, Cell, and Organ Systems
BIOL 5285 Fundamentals of Mammalian Genetics
BIOL 5319 Molecular Foundations of Medicine
BIOL 5352 Developmental Biology
BIOL 5357 Chemistry and Physics of Biomolecules
BIOL 548 Nucleic Acids and Protein Biosynthesis
BIOL 5488 Genomics (4Cr)
BIOL 5501 The Biology and Pathology of the Visual System
BIOL 5571 Cellular Neurobiology (4Cr)
BIOL 5651 Neural Systems
BIOL 5665 Science of Behavior
BIOL 5663 Neurobiology of Disease

Mathematics/Computing requirement
BME 570 Mathematics of Image Science
BME 5912 Applied Mathematics for Biomedical Sciences
BME 593 Computational Methods for Inverse Problems
ESE 501 Mathematics of Modern Eng. I
ESE 502 Mathematics of Modern Eng. II
ESE 517 Partial Differential Equations
ESE 520 Probability and Stochastic Processes
MATH 415 Partial Differential Equations
MATH 449 Numerical Applied Mathematics
MEMS 5001 Optimization Methods in Engineering
PHY501 Methods of Theoretical Physics I
PHY502 Methods of Theoretical Physics II
PHY503 Advanced Math Methods for Physicist & Eng. I
PHY504 Advanced Math Methods for Physicist & Eng. II
BME 550 Numerical Methods for Computational Modeling in Biomedicine
BME 5913 Molecular Systems Biology: Computation & Measurements for Understanding Cell Physiology and Disease
BMI 5304 Introduction to Biomedical Computing
CSE 501N Programming Concepts and Practice
CSE 502N Fundamentals of Computer Science
CSE 503S Rapid Prototype Development and Creative Programming
CSE 504N Object-oriented Software Development Lab
CSE 511A Introduction to Artificial Intelligence
CSE 515T Bayesian Methods in Machine Learning
CSE 517A Machine Learning
CSE 543T Algorithms for Nonlinear Optimization
CSE 554A Geometric Computing for Biomedicine
CSE 555A Computational Photography
CSE 559A Computer Vision
CSE 541T Advanced Algorithms
CSE 584A Algorithms for Biosequence Comparison
MEMS 5515 Numerical Simulation in Solid Mechanics I

Some courses fall into multiple categories but can only be used to fulfill a single degree requirement.

Additional courses may fulfill the BME, life science, mathematics or computer science requirements, dependent upon your background and at the discretion of the Director of Master’s Studies. All courses outside of Engineering other than those listed above require approval of the Director for those requirements.

Courses listed above and graduate Engineering courses except E60 ENGR, Sever Institute courses, and journal clubs or surveys automatically count as graduate program electives. Additional courses that have been approved are included below.

ADDITIONAL COURSES THAT FULFILL THE PROGRAM ELECTIVE REQUIREMENT:

BIOL 5075 Fundamentals of Biostatistics for Graduate Students (2Cr)
BMI 5302 Introduction to Biomedical Informatics: Foundations
CHEM 453 Bioorganic Chemistry
DAT 561 Introduction to Python and Data Science
PHY 589 Selected Topics in Physics 1
For additional requirements for the MS degree, see the School of Engineering and Applied Sciences website at:
http://bulletin.wustl.edu/grad/engineering/biomedical/

Bachelor's/Master's (BS/MS) Additional Information

BS/MS students may transfer up to 6 credits of shared coursework from their BS toward the MS upon the approval of the Director of Master’s Studies. These transfer/shared credits must be determined at the first advising session and be sent to the registrar’s office for notification and approval.

Doctoral/Master’s (PhD/MS) Additional Information

Students enrolled in the PhD program in BME are eligible to concurrently pursue a non-thesis MS. To obtain the MS, all program requirements described in this Policy document must be fulfilled.

Other Policies

Secretarial Service
Department secretaries do not generally provide clerical services to graduate students except in connection with scheduled courses and sponsored research projects.

Copying Service
Graduate students may not charge copying work to the department or a research project without prior authorization. Personal copies can be charged to a student’s personal account.

This is a compilation of policies and regulations applicable to graduate students in the Department of Biomedical Engineering. Students should also become familiar with the general regulations of the Henry Edwin Sever Graduate School of Engineering and Applied Science as described in the School’s Web site:
www.engineering.wustl.edu
CONTACTS

Department of Biomedical Engineering
Washington University
Whitaker Hall, Room 190
One Brookings Drive, Campus Box 1097
St. Louis, MO 63130-4899

Director of Master’s Studies
Dennis Barbour
Whitaker Hall 200E
314-935-7548
E-Mail: dbarbour@wustl.edu

Master’s Student Coordinator
Angela Bell
Whitaker Hall 190
314-935-7208
E-mail: abell@wustl.edu

Websites
http://bulletin.wustl.edu/grad/engineering/biomedical/

https://bme.wustl.edu/graduate/ms/Pages/default.aspx

https://engineering.wustl.edu/current-students/graduate-student-services/Pages/default.aspx

https://engineering.wustl.edu/current-students/student-services/Pages/Academic-Calendar.aspx

http://engineering.wustl.edu/current-students/student-services/Pages/academic-integrity-policy.aspx

2020-2021